行列式和线性方程组是考研数学线性代数部分的两大基础和重点,我们在复习的时候一定要掌握好。下文中为大家整理了有关行列式的基本应用以及常见题型,一起来看看吧。
在生物信息学中,人类基因的染色体图谱在进行DNA序列对比是就用到了矩阵的相似。
基于生物学中序列决定结构,结构决定功能的普遍规律,将核酸序列和蛋白质一级结构上的序列都看成由基本字符组成的字符串,检测序列之间的相似性,发现生物序列中的功能、结构和进化的信息。
图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、 摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用 于遥感数据分析、计算机视觉、图像处理等领域。
由于同一场景拍摄的图像是真实的三维,世界在不同时间向成像平面的一系列投影,而图像与图像之间具有较大的相关性和信息冗 余,所以无论所处理的图像是发生何种形式的变化。
在英文中有一种对消息进行保密的措施,就是把英文字母用一个整数来表示。然后传送这组整数。这种方法是很容易根据数字出现的频率来破译,例如出现频率特别高的数字,很可能对应于字母E。
可以用乘以行列式和矩阵A的方法来进一步加密。假如A是一个行列式等于±1的整数矩阵,则A1的元素也必定是整数。而经过这样变换过的消息,同样两个字母对应的数字不同,所以就较难破译。接收方只要将这个消息乘以A-1就可以复原。
企业为了创造更大的价值,需要购买新设备,但买新设备花钱较多。而继续使用旧设备需要大量的维修费。为了解决这一问题,行列式和矩阵就可以计算出在哪一年更新设备,使企业的经济效益最好。
比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和行列式的稀疏性,节省计算机的存储空间和搜索时间。
题型一:对逆序及行列式定义的考查,正确理解概念,题型一便可迎刃而解。
题型二:抽象行列式的计算,解题思路为(1)用行列式的性质做恒等变形;(2)利用行列式与矩阵乘法的.关系简化计算;(3)利用特征值与行列式的关系。
题型三:数字型行列式的计算,解题方法为:
(1)公式法,低阶行列式,二阶三阶常可直接代公式;三阶或以上按照行列式展开定理进行降阶后再计算。
(2)三角化法,用行列式的性质做恒等变形,将行列式化为上三角或下三角行列式。
(3)递推法,利用行列式按行或按列展开的定理对行列式降阶,得到递推式,再通过递推式求通式。
以上为大家总结了有关行列式的基本应用和常见题型,希望可以帮助到大家的学习,进一步提升对行列式的了解。如果大家对以上内容还存在疑问,可以在线咨询本站老师。