1.complex number的基本形式:
a+bi,其中a代表实数轴,b代表虚数轴。 modulus等于对a,b求勾股定理。
2.排列组合公式
当题目暗示选取的事件有顺序时,用排列。 当无顺序,只是选取时,用组合。
比如,10个人选出3个人,分别发一等奖二等奖三等奖,就用排列。
10个人选出3个人,发奖,就用组合。
3.非排列组合的counting题目
在可放回实验中,不可以用排列组合公式。
比如0,1,3,4四个数字来组成一个四位数,多少中可能性。
这个题目并不考察排列组合,因为数字可以循环使用。
第一位应该从2,3,4中选1个,是3种可能。
后三位可以从4个数字任选,所以总的可能性是3*4*4*4种
4. 排列组合中的多算,重复计算
例题:3个白球,2个红球。问5个球排列有多少中可能性。
首先5个球排列是5!,但白球和白球之间无差别,红球和红球之间无差别,要用5!除以多算的部分。
答案:5!/(3!*2!)=10种
5.排列组合结合概率的难题
例题:问抛硬币3次,两次向上的概率是多少?
首先计算c(3,2),代表从3次选出2次是硬币向上,再乘以0.5的平方,代表2次向上,再乘以0.5一次方,代表另一次向下。
答案:c(3,2)*0.5三次方
6.矩阵
首先大家要知道【MxL】的矩阵只能乘以【LxN】的矩阵。第一个矩阵的列要和第二个矩阵的行相等,得到的结果是【MxN】的矩阵。2x2的矩阵的determinant算法:
3x3或者多乘多的正方形矩阵的determinant计算需要计算器。
先找到matrix里面的det,代表determinant,再输入某个矩阵,之后enter。
7.数列和级数
所谓数列就是一些数字,所谓级数就是把一些数字加起来求和。
考试考查等差和等比两种:arithmetic和geometric。
等比无穷技术的求和公式是a/(1-r)
a代表首项,r代表公比
8.向量
向量的magnitude用勾股定理算。
向量有水平和垂直两个方向,分别用i和j表示。
涉及向量时,有时候会考察triangle inequality: