1.勾股定理
a,b,c分别代表直角三角形的勾、股、弦三边之长
(a^2)+(b^2)=(C^2)
其变形b^2=c^2-a^2=(c-a)(c+a)
a^2=c^2-b^2=(c-b)(c+b),
c^2=2ab+(b-a)^2
2.某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n^2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
3.等差数列
1)等差数列通项公式:an=a1+(n-1)d
2)前n项和公式:Sn=na1+[n(n-1)d]/2或Sn=n(a1+an)/2
4.等比数列
1)等比数列通项公式:an=a1??q^(n-1)
2) 前n项和公式:当 q= 1时,Sn=na1
当 q≠1 时, Sn=[a1(1-q^n )] /(1-q)或Sn=(a1-anq)/(1-q)
5. 一元一次方程
一般形式:ax+b=0(a、b为常数,a≠0)
6.一元二次方程
一般形式:ax^2+bx+c=0(a、b、c为常数,a≠0)
7. 韦达定理
一元二次方程ax^2+bx+c (a不为0)中
设两个根为X1和X2
则X1+X2= - b/a
X1*X2=c/a
8.阶乘
1×2×3×……×n=x,x就是n的阶乘